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Abstract It is demonstrated herein that the quantity ‘r ’ ap-
pearing in the so-called “Schwarzschild solution” is neither
a distance nor a geodesic radius but is in fact the radius of
Gaussian curvature. The radius of Gaussian curvature does
not generally determine the geodesic radial distance (the
proper radius) from the centre of spherical symmetry of a
spherically symmetric metric manifold except in the case of
a Euclidean space.
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1 Introduction

In the usual interpretation of Hilbert’s [1–3] “Schwarzschild’s
solution”, the quantityr therein hasnever been properly
identified. It has been variously called “ the radius” [4,5]
of a sphere, the “coordinate radius”[6] or “radial coordi-
nate” [7,8] or “radial space coordinate” [9], the “areal ra-
dius” [6,10], the “reduced circumference” [11], and even
a “a gauge choice, which defines r” [12]. In the particu-
lar case ofr =2GM/c2 it is invariably referred to as the
“Schwarzschild radius” or the “gravitational radius”. How-
ever, the irrefutable geometrical fact is thatr, in Hilbert’s
version of the Schwarzschild/Droste line-element, is the ra-
dius of Gaussian curvature [13–16], and as such itdoes not
in fact determine the geodesic radial distance from the cen-
tre of spherical symmetry located at an arbitrary point in the
related metric manifold. Indeed, it does not in fact deter-
mine any distance at all in a spherically symmetric Rieman-
nian metric manifold. It is the radius of Gaussian curvature
merely by virtue of its formal geometric relationship to the
Gaussian curvature.
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It must also be emphasized that a geometry is completely
determined by theformof its line-element [17].

2 Gaussian curvature

Recall that Hilbert’s version of the “Schwarzschild” solution
is (usingc=G=1),

ds2 =

(

1−
2m
r

)

dt2−

(

1−
2m
r

)−1

dr2

−r2(

dθ 2 +sin2 θdϕ2) ,

(1)

whereinr can, by assumption (i.e. without proof), in some
way or another, go down to zero. Schwarzschild’s [18] ac-
tual solution, for comparision, is

ds2 =
(

1−
α
R

)

dt2−
(

1−
α
R

)−1
dR2

−R2(

dθ 2 +sin2 θdϕ2) ,

(2)

R= R(r) =
(

r3 + α3)
1
3 , 0≤ r < ∞,

α = const.

Note that (2) is singular only whenr =0 (in which case the
metric does not actually apply), and that the constantα is
indeterminable (Schwarzschild did not setα =2m for this
reason).

For a 2-D spherically symmetric geometric surface [19]
determined by

ds2 = R2
c(dθ 2 +sin2 θdϕ2), (3)

Rc = Rc(r),
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the Riemannian curvature (which depends upon direction)
reduces to the Gaussian curvatureK (which is independent
of direction), given by [13,14,20–23],

K =
R1212

g
,

whereRi jkm=ginRn
. jkm is the Riemann tensor of the first kind

andg=g11g22=gθθ gϕϕ . Recall that

R1
.212 =

∂Γ 1
22

∂x1 −
∂Γ 1

21

∂x2 +Γ k
22Γ

1
k1−Γ k

21Γ
1
k2,

Γ α
αβ = Γ α

β α =
∂

∂xβ

(

1
2

ln |gαα |

)

,

Γ α
β β = −

1
2gαα

∂gβ β

∂xα , (α 6= β ),

and all otherΓ α
β γ vanish. In the above,k,α,β =1,2, x1=θ

andx2=φ , of course.
Straightforward calculation gives for expression (3),

K =
1
R2

c
,

so thatRc is the inverse square root of the Gaussian cur-
vature, i. e. the radius of Gaussian curvature, and sor in
Hilbert’s “Schwarzschild’s solution” is the radius of Gaus-
sian curvature. The geodesic (i.e. proper) radius,Rp, of
Schwarzschild’s solution, up to a constant of integration,is
given by

Rp =

∫

dR(r)
√

1− α
R(r)

, (4)

and for Hilbert’s “Schwarzschild’s solution”, by

Rp =

∫

dr
√

1− 2m
r

.

Thus the proper radius and the radius of Gaussian curvature
are not the same; for the above, in general,Rp 6= R(r) and
Rp 6= r respectively. The radius of Gaussian curvature does
not determine the geodesic radial distance from the centre of
spherical symmetry of the metric manifold. It is a “radius”
only in the sense of it being the inverse square root of the
Gaussian curvature. A detailed development of the forego-
ing, from first principles, is given in [13] and [14].

Note that in (2), ifα =0 Minkowski space is recovered:

ds2 = dt2−dr2− r2(

dθ 2 +sin2 θdϕ2) ,

0≤ r < ∞.

In this case the radius of Gaussian curvature isr and the
proper radius is

Rp =

∫ r

0
dr = r,

so that the radius of Gaussian curvature and the proper ra-
dius are identical. It is for this reason that the radii, great
circumferences, surface areas and volumes of spheres, etc.,
in Minkowski space can be determined in terms of the radius
of Gaussian curvature. However, in the case of a (pseudo-)
Riemannian manifold, such as (1) and (2) above, only great
circumferences and surface areas can be determined via the
radius of Gaussian curvature. Distances from the centre of
spherical symmetry to a geodesic spherical surface in a Rie-
mannian metric manifold can only be determined via the
proper radius, except for particular points (if any) in the
manifold where the radius of Gaussian curvature and the
geodesic radius are identical, and volumes by a triple in-
tegral involving a function of the radius of Gaussian curva-
ture. In the case of Schwarzschild’s solution (2) (and hence
also for (1)), the radius of Gaussian curvature,Rc=R(r),
and the proper radius,Rp, are identical only atRc ≈ 1.467α.
When the radius of Gaussian curvature,Rc, is greater than
≈ 1.467α, Rp > Rc , and when the radius of Gaussian curva-
ture is less than≈ 1.467α, Rp < Rc.

The upper and lower bounds on the Gaussian curvature
(and hence on the radius of Gaussian curvature) are not arbi-
trary, but are determined by the proper radius in accordance
with the intrinsic geometric structure of the line-element
(which completely determines the geometry), manifest in
the integral (4). Thus, one cannot merely assume that the
radius of Gaussian curvature for (1) and (2) can vary from
zero to infinity. Indeed, in the case of (2) (and hence also of
(1)), asRp varies from zero to infinity, the Gaussian curva-
ture varies from 1/α2 to zero and so the radius of Gaussian
curvature correspondingly varies fromα to infinity, as eas-
ily determined by evaluation of the constant of integration
associated with the indefinite integral (4). Moreover, in the
same way, it is easily shown that expressions (1) and (2) can
be generalised [16] to all real values, but one, of the variable
r, so that both (1) and (2) are particular cases of the general
radius of Gaussian curvature, given by

Rc = Rc(r) =
(

∣

∣r − r0

∣

∣

n
+ αn

)
1
n
, (5)

r ∈ ℜ, n∈ ℜ+, r 6= r0,

whereinr0 andn are entirely arbitrary constants. Choosing
n=3, r0 =0 andr > r0 yields Schwarzschild’s solution (2).
Choosingn=1, r0 =α andr > r0 yields line-element (1) as
determined by Johannes Droste [24] in May 1916, indepen-
dently of Schwarzschild. Choosingn=1, r0 =α andr < r0
givesRc=2α − r, with line-element

ds2 =

(

1−
α

2α − r

)

dt2−

(

1−
α

2α − r

)−1

dr2

−(2α − r)2(

dθ 2 +sin2 θdϕ2) .
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Using relations (5) directly, all real values ofr 6= r0 are
permitted. In any case, however, the related line-element
is singular only at the arbitrary parametric pointr = r0 on
the real line (or half real line, as the case may be), which
is the only parametric point on the real line (or half real
line, as the case may be) at which the line-element fails (at
Rp(r0)=0 ∀ r0 ∀ n).
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